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Abstract

A robot self-model is a task-agnostic representation of
the robot’s physical morphology that can be used for motion
planning tasks in absence of classical geometric kinematic
models. In particular, when the latter are hard to engineer
or the robot’s kinematics change unexpectedly, human-free
self-modeling is a necessary feature of truly autonomous
agents. In this work, we leverage neural fields to allow a
robot to self-model its kinematics as a neural-implicit query
model learned only from 2D images annotated with camera
poses and configurations. This enables significantly greater
applicability than existing approaches which have been de-
pendent on depth images or geometry knowledge. To this
end, alongside a curricular data sampling strategy, we pro-
pose a new encoder-based neural density field architecture
for dynamic object-centric scenes conditioned on high num-
bers of degrees of freedom (DOFs). In a 7-DOF robot test
setup, the learned self-model achieves a Chamfer-L2 dis-
tance of 2% of the robot’s workspace dimension. We demon-
strate the capabilities of this model on a motion planning
task as an exemplary downstream application.

1. Introduction

Neural fields paired with differentiable rendering allow
to learn accurate 3D scene information from annotated 2D
images. This is achieved by overfitting a neural network to
the scene observed from multiple camera views using a pho-
tometric reconstruction loss [23]. At inference time, this al-
lows to render realistic images of the scene from novel cam-
era views. Due to the importance of scene representations
in robotics, neural field extensions have evolved focusing
on use cases in this area. While most of these approaches
[19, 1, 24, 21] use neural fields to capture and harness in-
formation about the robot’s environment such as for recon-
struction, navigation, or localization tasks, here we propose
to learn neural fields to represent - and control - the robot.
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Figure 1. Overview of contributions (shaded): When a kinematic
model is unavailable for the robot, 1) our method to collect an-
notated depth-free image data can be used instead to train 2) a
high-DOFs dynamic neural density field that the robot uses as self-
model whose 3) forward and inverse kinematic capabilities enable
motion planning applications.

We target the task of robot self-modeling, the (robot’s)
ability to learn a representation of the robot’s kinematics
from observing its behavior without human interference,
in any state of its existence. Similar to a mental image
of oneself, these models can continually be updated to re-
flect the state of the robot, rendering them advantageous
over classical geometric kinematic models which are usu-
ally engineered once, may be mismatched to the current
state of the robot, and are unavailable for unknown robots
[29]. For these reasons, learning-based approaches to robot
self-modeling emerged. Despite being successful, a major
drawback is their dependence on supervised samples or, in
the self-supervised case, depth data in the training distri-
bution. These requirements hinder the readiness of target
applications of self-modeling in real-world scenarios where
this information is not available, such as after damage to
the robot’s body during deployment. Particularly, a recent
approach [6] to learn a full-body kinematic forward model



as neural-implicit representation requires images annotated
with depth values from an RGB-D camera. In this work
we propose to solve this obstacle by learning neural fields
in a self-supervised manner directly from 2D images, only
annotated with camera parameters and the dynamic config-
uration. Consequently, we approach the task of learning a
neural-implicit full-body kinematic model from unlabeled
kinematic data through training a dynamic neural field that
offers downstream compatibility (Figure 1).

We achieve this by introducing a new type of dynamic
neural fields. Previous work [27] has extended the static-
scene setup of neural radiance fields [23] by establishing
time as the fourth input dimension next to 3D coordinates,
which together are mapped to density and color values. In
contrast, in this work we introduce a high number of de-
grees of freedom (DOFs) as conditioning variables for a
coordinate-to-density map that in complex interdependence
change local parts of the scene, which has not been done for
the purpose of robotic applications. Different from other
work relying on deformation from a canonical representa-
tion [26], we propose a DOF-encoder-based dynamic neu-
ral density field, which is amenable to modeling the shapes
of complex changing objects beyond robotics.

In summary, this work contributes the following:

• We introduce a curricular data sampling method and
neural network architecture to represent high-DOFs
object-centric scenes as dynamic neural density fields.

• We use our method to visually learn the first robot self-
model without depth information and from a single
camera view, and quantify its quality experimentally.

• Extending [6], we discuss and demonstrate down-
stream applications of neural-field self-modeled kine-
matics in motion planning.

We discuss preliminaries and prior work in section 2,
and introduce our method and its applications in section 3.
We subsequently detail the experimental setup for a sam-
ple robot in section 4, and discuss the results in section 5,
before concluding with regards to future work in section 6.

2. Background and related work
Robot self-modeling. A self-model is a task-agnostic,

general-purpose representation of a robot’s physical shape
and dynamics that can be acquired and continuously up-
dated at any time without a human in the loop [16, 10]. The
objective to enable machines to produce a cognitive model
of themselves to guide their behavior has been inspired by
similar behavior in human beings [28]. Practically, when-
ever a geometric kinematic model, which captures the spa-
tial relations and physical constraints of the robot’s links
and joints manually as result of simulation and engineering,

is unavailable, the ability to self-model is required. In par-
ticular, when the robot’s kinematics are altered, for instance
through damage or undocumented body manipulation, the
robot can learn an updated model and without the need for
human engineering [4, 5].

Early approaches to robot self-modeling have lever-
aged analytical, probabilistic, and evolutionary methods
[4, 11, 5]. Learning-based approaches to implicitly rep-
resent self-models were first presented in [17], necessitat-
ing training samples that are labeled with end effector posi-
tions. Similarly, certain approaches [12, 13] pre-determine
the set of parameters to learn for a system, identified based
on prior knowledge about the shape or function. The most
recent, partially self-supervised approach which constructs
an agnostic self-model without such information, [6], still
requires depth information, which is used to learn an SDF-
based occupancy query model. In all of these approaches,
data acquisition plays a crucial role with strategies ranging
from entirely random [6], to interactive [3], and targeted-
exploratory [12, 2]. This work builds on the agnostic,
neural-implicit class of representation proposed in [6] and
alleviates the depth requirement using neural fields, while
introducing a curricular-random data acquisition strategy
for its training.

Neural (radiance) fields. Neural fields are continuous
maps from any spatial coordinate in 3D space x = (x, y, z)
to a scalar or vector. In neural radiance fields (NeRF), each
point is assigned a tuple of density and color. The map is
parameterized via a neural network Φ, such as a multi-layer
perceptron (MLP), overfit to the specific scene,

fΦ : (x,d)→ (σ, c) (1)

where x ∈ R3 is the coordinate vector, d ∈ [0, 1]3 is the
viewing direction, σ ∈ [0,∞) is the predicted density, and
c ∈ [0, 1]3 is the predicted RGB color. Both to march a
ray through the scene to obtain point coordinates x and to
compute the viewing direction d, the camera pose wTc is
used.

NeRFs are neural-implicit representations of a scene
since novel views can be rendered by querying the learned
map, without the need to store 3D information explicitly,
such as in point clouds or voxels. From the field over the
3D space, 2D projections to images from arbitrary camera
views are rendered via volume rendering [14, 22]: The color
at a pixel C is computed by integrating the product of color,
density, and visibility of the points residing on the ray that
was marched through the scene from the projection plane
within the depth view bounds. The visibility T̂i of a point
depends on the density values of the points between the pro-
jection plane and that point. Using quadrature, the integral
is approximated on N points, which are sampled in strati-
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fied manner from bins on the ray, as follows:

Ĉ(r) =

N∑
i=1

T̂i α(σΦ(xi)δi) cΦ(xi,d) (2)

T̂i = exp

− i−1∑
j=1

σΦ(xj)δj

 (3)

Here, r = o+td is the pixel-corresponding ray marched
through the scene scaled by depth t; α(σ) = 1 − exp(−σ)
maps density values into the range [0, 1]; and δi = ti+1− ti
is the distance between adjacent points on the ray.

The differentiable nature of volume rendering allows to
train the MLP via minimizing a photometric reconstruction
loss. Given training images from different views centered
on the same object, rays are marched through the scene us-
ing the provided camera poses. The predictions on the rays
are rendered into images from the same views, allowing to
use the mean-squared error (MSE) loss to update the MLP
parameters via backpropagation.

Dynamic neural fields have emerged to represent scenes
with moving parts, for instance over the time dimension
[27]. In extension, numerous works have aimed at model-
ing human bodies, customarily using prior knowledge about
their shape or multi-view video training data [7, 30]. Re-
lated to our work, we propose a new dynamic neural field
architecture geared towards shape-unknown objects with
many DOFs that are interdependent, trained on single-view
images only.

3. Method
3.1. High-DOFs dynamic neural density field

We propose to extend neural fields to dynamic scenes
in which changes are anchored in interdependent DOFs of
the object in the scene. For this purpose, we condition the
map fΦ on the k-dimensional configuration of the object
θ =

[
θ0, . . . , θk−1

]T
that drives the observed changes.

fΦ : (x,θ)→ (σ) (4)

To model the shape, the field does not assign color, and
thus is independent of the viewing direction. Nonetheless,
color can be included for the purpose of training the model
via a photometric loss.

Specifically to learn a self-model of a robot, the map
is conditioned on the joint configuration of the robot
composed of k joint values and thus learned as 3 + k-
dimensional neural field. We can subsequently compute
density fields in novel configurations, and render these into
projections from novel views, assigning an arbitrary color.

Encoder-based architecture. We parameterize the map
via a neural network based on [23], that is an MLP with

ReLU activations. Trivially extending this architecture by
inserting θ as additional input parameters leads to unsatis-
factory results. Consequently, we extend [6]’s approach and
introduce separate encoders for the spatial and the new con-
ditioning input variables. This harnesses the independence
of the spatial coordinates and the DOFs configuration and
promises to learn useful representations resulting from the
combinations of the constituents of each group.

Applying the shuffled curriculum learning approach in-
troduced below, however, results in continual forgetting of
previously learned relationships of DOFs as the training
progresses, reducing performance on previously well re-
constructed samples. For this reason, we introduce DOF-
individual encoders, MLPs that encode each input variable.
Since gradients flowing back to the weights of these MLPs
will be zero when the joint values are zero in curriculum-
learning batches in which exclusively other DOFs are sam-
pled, we argue this improves the memorability of useful fea-
tures for the behavior introduced by each DOF individually.
The outputs of these individual encoders are concatenated
and chained to the group-based encoders. Hence the overall
model is described by:

fΦ(x,θ) =

ΦMLP

(
ΦEncx

(
3⊕

l=1

ΦEncxl
(xl)

)
,ΦEncθ

(
k−1⊕
l=0

ΦEncθl
(θl)

))
(5)

where ⊕ is the concatenation operator and Φ(x) = hn ◦
. . . ◦ h1(x) is an n-layer MLP with ReLU activations. The
architecture is shown in Figure 2.

Following [23], we train two models of this type to sepa-
rately model spatially coarse and fine predictions. The sec-
ond model evaluates points on the ray sampled from regions
of t where the first model has resulted in higher density pre-
dictions. All points are used to render the projection of a
ray. To equip the model with the ability to better predict
fine, high-frequency structures, [23] employ a sine-cosine
positional embedding method. While being effective for
that purpose, the high dimensionality of the embedding hin-
ders the learning of the true physical movement associated
with traversing the DOF value ranges. Consequently, we re-
move the embedding and substitute it with the normalized
original values, resulting in 3+ k-dimensional inputs to the
network which are passed into the DOF encoders.

Learning from a one-camera setup. To circumvent the
need for multiple cameras observing the robot to produce
the neural-field self-model, which limits real-world applica-
tions, we harness the mobility of the robot’s base. Given the
configuration of the robot θ and the camera pose as camera-
to-world transform wTc, we enforce the first DOF to be the
base rotation. Since rotating the object at its base is equiv-
alent to rotating the camera about the upward axis, multi-
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Figure 2. Overview of proposed method. A - Training images of robot in different configurations: While the point coordinates and the
annotated configuration are the inputs to the neural network, the true projected color of the pixel is used for the reconstruction loss. B -
Neural network architecture: The individual DOFs, alongside the spatial coordinates, are individually encoded, concatenated and group-
wise encoded, and concatenated and processed to an output density. C - The trained neural density field is used to evaluate the membership
of a configuration in the configuration space with respect to an obstacle by predicting the densities of points queried from its volume.

view consistency for the density predictions can be ensured
by assigning:

(wTc)
′ ← Rz(θ0)

wTc (6)

θ′0 ← 0 (7)

Curricular training data. Due to the large space
of configurations and the serial dependence among the k
DOFs, the most distant-from-the-base joint’s position de-
pending on all previous k − 1 DOFs, learning a high-
DOFs neural field is difficult. Thus, the data generation
approach is crucial to the success of the model inferring
the correct marginal influence of each DOF. We propose
to use a curriculum-learning-inspired sampling approach.
For the set of all DOF indices Θ = {l}k−1

l=1 , we compute
the powerset, that is the set of all subsets of Θ, and sort it
in ascending order by magnitude, excluding the empty set:
SΘ = {s}s⊆Θ. For each set of DOF indices s ∈ SΘ, train-
ing samples are generated by randomly sampling joint val-
ues from the permissible ranges of the DOFs in s. The val-
ues of the remaining DOFs are fixed to zero. In this manner
we encourage learning the contribution of each DOF first
by itself, and then in combination with other DOFs in order
of increasing complexity, until all DOFs are interacting.

To encourage learning the behavior across the full ranges
of the considered DOFs, we sample from uniform distribu-
tions. For example:

θ(1,4) =
[
0 θ1 ∼ D1 0 0 θ4 ∼ D4 . . . 0

]
(8)

Di = U(θ
(max)
i , θ

(min)
i ) (9)

We find that shuffling the training images such that im-
ages with different numbers of active DOFs lie in the same
batch improves the training performance.

Training. We optimize our model via the MSE photo-
metric loss between ground-truth pixels and rendered pix-
els. In the given setup, our experiments have suggested that
keeping the RGB output improves training performance.
Nonetheless, the density prediction is the only output kept
to be used in the self-model once training has concluded.
To train density-output-only high-DOFs neural fields, the
MSE loss may be used between binarized images and vol-
ume renderings with c set to black.

3.2. Neural-field self-model and applications

Self-Model. The trained map fΦ is a neural-implicit
kinematic model of the robot since it enables to reconstruct
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the robot’s shape conditioned on its joint configuration. By
learning this model only from annotated 2D images, this
replaces the need to know the robot geometry altogether.
Such a neural-implicit model gives rise to applications in
motion planning, similar to the use of a classical geometric
kinematic model.

Motion planning: Touching a target object via in-
verse kinematics. Extending [6], we demonstrate an imme-
diate downstream use case of the model as motion planning.
Due to the differentiable nature of the model’s forward pre-
diction of the density of a point given the configuration, we
can compute the inverse kinematics, that is the configura-
tion such that a point is occupied. For this purpose, the
MLP parameters are fixed and the input joint values are op-
timized via projected gradient descent (PGD) to minimize
the deviation from the target density level.

By choosing appropriate points, the robot can, for exam-
ple, compute how to reach an object. Furthermore, by se-
lecting the initial configuration of the optimization to be the
current configuration of the robot and acting in an obstacle-
free environment, the inverse kinematics optimization steps
can be cast as a path to reach the target. Precisely, given in-
formation about the target, we uniformly sample N surface
points Os = {xi}Ni=1 and query the robot’s density on them,
leveraging that density on the surface above a threshold τ
indicates touch. In the fine model, starting from a no-touch
configuration θ(0), we minimize the following loss, which
will be ≤ 0 when the target is reached:

L(θ, Os) = min
x∈Os

[−α(fΦ(x,θ))] + τ (10)

The final ReLU activation at ΦMLP’s output unit for σ is
removed to produce non-zero gradients.

To enforce that the joint configuration found and every
step of the optimization is within the joint limits, after each
step of size η the joint values are projected back into the
k-dimensional ball representing the permissible ranges:

θ(j+1) = Πθ(max)

θ(min)

[
θ(j) − η

∂L(θ(j), Os)

∂θ(j)

]
(11)

If only the inverse kinematic problem is considered, ran-
dom initializations of the start configuration can accelerate
the optimization process to find a configuration that results
in a target point’s occupation.

Motion planning: Configuration space. For more
complex constraints and in the presence of obstacles,
customary motion planning algorithms can be used with
the self-model. Any planning algorithm using configu-
ration space information, that is a binary map over the
k-dimensional space of possible configurations indicating
which configuration is collision-free, is compatible with
the neural-field-implicit kinematic model. Given the high-
DOFs neural density field and information about obstacle(s)

in the scene, a configuration is valid if the maximum den-
sity of the robot among N uniformly sampled points from
the volume of the obstacle Ov is below a threshold. Con-
sequently, sampling-based motion planning methods that
search the configuration space such as Probabilistic Road
Map [15] or Rapidly-Expanding Random Trees [18], can
be used. The membership in the configuration space can be
evaluated as:

Q(θ) =

{
True if: maxx∈Ov

[α(fΦ(x,θ))] < τ

False else
(12)

4. Experimental Setup
We experimentally demonstrate our method on a 7-DOF

robot in simulation.
Training distribution. We apply the curriculum data

generation described above with 16 different image sam-
ples per set s and 6 random base rotations sampled anew
for each image, totalling 5, 588 annotated image samples.
We generate the samples in simulation of the Panda robot
[8] with 7 joints and a rotatable base (k = 8), using the Py-
bullet simulator [9]. We group batches of 15 samples, and,
to avoid overfitting to one batch, only process 10, 240 rays
per sample image in the batch.

Training. We use the described architecture with 3-
layer DOF-individual encoder MLPs, 1-layer coordinate en-
coder MLPs, 2-layer group encoder MLPs, and the final 7-
layer density MLP. We train using the Adam optimizer for
1,320,000 steps with a learning rate of 4e− 5 and optimize
the parameters of all MLPs together.

Predicted visualizations. We produce point clouds by
querying the field from two camera poses at the front of the
scene on the x- and y-axes. Points with alpha values above
0.015 are kept, determining the isolevel. On the fused point
cloud, marching cubes [20] reconstruction is applied to gen-
erate a triangle mesh, followed by hole repair and Taubin
smoothing [31] algorithms.

Ground truth visualization. We produce ground-truth
3D data by simulating the true geometric model in Pybul-
let. The ground-truth point cloud for a joint configuration is
the fusion of six point clouds from RGB-D images obtained
from two camera views per axis at either end of the axis
with the view centered at the object. The mesh is produced
identically to the predicted meshes.

Metrics. To assess the quality of our model, we compare
the ground-truth against the predicted meshes. First, we use
the customary Chamfer-L2 distance, the shortest Euclidean
distance of each point in a set to any point in the other set,
applied symmetrically and averaged over all points. This
returns an average spatial offset per point. We generate
the point sets by sampling uniformly from the mesh sur-
faces. In addition, as measures for the spatial similarity
of the predicted shape, we compute two intersection over
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Distance metric config a config b config c config d config e test set (n=30)
Chamfer-L2 (m) ↓ .017 .019 .053 .013 .013 .024

Chamfer-L2 (% of workspace-z) ↓ 1.35 1.51 4.22 1.06 1.07 1.94
Surface area IoU ↑ .501 .479 .408 .571 .572 .496
Hull volume IoU ↑ .685 .607 .336 .714 .690 .573

Table 1. Spatial distances of predictions against ground truth in five different random test configurations.

Ground	
truth

Prediction
front	view

top	view

top	view

front	view

𝜽 𝒂 =	 [0.0, −1.77, −1.62,
	2.36, −0.62, −1.33, 0.0, 0.89],	

𝜽 𝒃 = [0.0, −0.89, 1.26, 2.36,
	−0.62, −1.92, 2.47, −1.77],	

𝜽 𝒄 = [0.0, −2.80, −1.62, −1.77,
	−1.24, −2.80, 2.28, −0.30],	

𝜽 𝒅 =	 [0.0, −1.48, 0, −0.59,
	−2.48, −1.33, 1.33, 0.89],	

𝜽 𝒆 =	 [0.0, −1.92, 0.18, 0.59,
	−1.24, −2.95, 0.76, 0.89].

Figure 3. Predicted vs. ground-truth meshes, smoothed and reconstructed via marching cubes from point clouds generated by querying the
high-DOFs neural density field. Please also see the supplementary video [25].

union (IoU) metrics. Both are based on a union point cloud,
constructed by fusion, and an intersection point cloud, con-
structed by keeping points with negative signed distance rel-
ative to the mesh defined by the other point cloud. We com-
pute a 2D metric, relating the surface areas of the meshes
reconstructed from the two point clouds, and a 3D metric,
relating the volumes of the convex hulls of the same two
meshes. The hull is generated from a fixed number of uni-
formly sampled surface points.

5. Results

Neural-field self-model. We show the predicted meshes
from the 7-DOF robot self-model for five random test con-
figurations from a fixed view in Figure 3. It can be observed
that in each configuration, the prediction follows the shape
of the ground truth, subject to small deviations in the rota-
tions of smaller parts of the body. For the shown samples,

this indicates that the model learned to correctly approx-
imate the shape from the configuration, despite the large
space of possible configurations. We find that density scales
with the certainty in the prediction and that despite the solid
material of the robot, most of the non-zero density values
are in the lower regime as opposed to close to one. Conse-
quently, the threshold selection, that is the marching cube
isolevel, is a significant hyperparameter, since it controls
the sensitivity with which sampled points are included. A
low threshold may lead to a too large shape relative to the
ground truth whereas a too high threshold may exclude parts
of the body in whose prediction the model is less certain.
We find that due to the serial nature of dependence among
the DOFs in this scene - the first link’s density only de-
pends on the first joint value whereas the seventh link’s den-
sity depends on all previous joints values - those excluded
parts are the higher-up components of the body. Conversely,
the highest density values belong to points in the base of
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Step	0	(start) Step	53	(loss<0)Step	8 Step	15

Predicted
Trajectory	1

Step	0	(start) Step	239 (loss<0)Step	30 Step	59

top	view

front	view

Predicted
Trajectory	2
top	view

front	view

Figure 4. Joint angle optimization at different steps via projected input gradient descent. The robot changes its configuration to minimize
a density loss that corresponds to touching a sphere. Please also see the supplementary video [25].

the robot, which does not move in response to the config-
uration. In addition, the querying resolution plays a cru-
cial role, where the trade-off is computational cost against
approximation of the true predicted model. In addition to
the qualitative evaluations, numerical results on the spatial
quality metrics are provided in Table 1. As most impor-
tant metric, the mean of the Chamfer-L2 distance for the
test set is 1.94% relative to the length of the shortest di-
mension of the workspace of the robot, 1.254m along the
vertical axis. This indicates that, on average, each point on
the mesh that was reconstructed from the points in the vol-
ume predicted to have sufficiently high density is close to a
point on the robot’s true surface given the queried config-
uration. Greater variance can be observed for the two IoU
metrics. For the volume-based IoU, this is due to the con-
straint that the hull must convexly contain all points of the
surface point cloud so that individual outliers have a large
effect on its shape, and thus, volume. In addition, while
marginally off-positioned predicted robot parts can still pro-
duce moderate Chamfer-L2 distances, these parts may not
or only partially intersect with the ground-truth parts, lead-
ing to a lower value. The surface area is similarly sensitive
to outliers while additionally depending on the smoothness
of the surface.

Motion planning. In Figure 4, snapshots of two gener-
ated trajectories to touch an object from a start position in

the displayed number of PGD steps are shown. The right
images correspond to the first joint configurations yielding
a loss lower than zero, that is those in which the robot’s
density on the sampled target object surface points is above
the specified threshold (τ = 0.6). Due to the joint-limit-
projected optimization and the absence of obstacles, the op-
timization steps form a valid trajectory. It can be observed
that the robot moves itself successfully into a configuration
in which the sphere is touched. A similar approach can be
used to evaluate the membership of a configuration in the
configuration space if the sphere is treated as obstacle in-
stead. We observe moderate sensitivity to hyperparameters
such as learning rate and initial configuration. In addition, τ
controls the closeness to the target in the final configuration.

6. Conclusion and outlook

In this work, we propose dynamic neural density fields
conditioned on high DOFs. We use this method to learn the
first neural-implicit self-model of a robot without a-priori
depth or geometry information which can be used in lieu
of classical kinematic models. For this purpose, we intro-
duce an architecture that concatenates encoders at different
levels of the semantic hierarchy of the input variables, and
train it according to a curricular data sampling strategy that
allows to learn and memorize the marginal effect of each
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DOF present in the robot. By querying the neural den-
sity field conditioned on the configuration, we can predict
the robot’s spatial occupation in arbitrary configurations,
resembling full-body forward kinematics. By querying at
points of interest and optimizing joint values, the model can
be used to compute inverse kinematics as well as the config-
uration space, enabling compatibility with downstream ap-
plications. In experiments with a simulated 7-DOF Panda
robot, our model predicts the robot’s dynamic occupation
of space accurately to over 98% of the workspace’s shortest
dimension and is successful in a motion planning task.

A robot with the ability to read its joint configuration and
access to one calibrated camera pointing at itself is able to
learn its neural-field self-model. To advance the real-world
readiness of this setup even further, we propose to conduct
future work into the directions of limiting the training data
to more sparsely observed DOFs configurations and train-
ing time to fewer steps, and of automatically estimating the
camera parameters, reducing the annotation requirement. In
addition, the integration of our approach, which models the
robot via neural fields, with previous work, which models
the robot’s environment, would be beneficial. For instance,
downstream tasks such as navigation or localization could
be enhanced by considering the robot’s current configura-
tion and the robot’s configuration could be optimized to help
in these tasks. Finally, such a model may extend to multi-
robot environments.

We highlight the readiness of our method to be used for
dynamic-object scenes outside robotics, such as nature, ani-
mals, or humans, or general DOFs-controlled environments.
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